GCE MARKING SCHEME

SUMMER 2016

BIOLOGY - BY5
1075/01

INTRODUCTION

This marking scheme was used by WJEC for the 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE BIOLOGY - BY5

SUMMER 2016 MARK SCHEME

Question			Marking details		MarksAvailable 1
2	(a)	(i)	Meiosis; correct spelling only		
		(ii) (iii)	$\begin{aligned} & \text { Anther / ovary / ovule / pollen } \\ & \text { embryo sac / megaspore / mic } \\ & 1-E, 2-C, 3-D, 4-F, 5-A, 6-B \\ & 0 / 1 / 2 \text { correct = } 0 \text { marks } \\ & 3 / 4 \text { correct = } 1 \text { mark } \\ & 5 \text { correct = } 2 \text { marks } \end{aligned}$	other cell/ pollen / pollen sac / spore;	2
		(iv)	6		1
	(b)	(i)	A metaphase II C metaphase I		1
		(ii)			2
			Any two from:		
			pairing of chromosomes/ bivalent	chromosomes not paired/ no bivalent	
			centromeres not on equator	centromeres on equator	
			chromosomes either side of equator	chromosomes on equator	
			chiasma present	no chiasma	
			Comparison needed for each mark Ignore references to numbers of chromosomes/ haploid/ diploid		
	(c)		Crossing over; \{Independent/random\} \{assortment/ segregation\};		2
			Question 2 total		[10]

Question		Marking details	$\begin{array}{c}\text { Marks } \\ \text { Available }\end{array}$	
3	(c)	(iv)	$\begin{array}{l}\text { Any two from: } \\ \text { - If plants become isolated/ ref to allopatric/sympatric } \\ \text { speciation/lack of gene flow; }\end{array}$	2
- They may be acted on by different selection pressures;				
- (they will develop further) differences which prevent				
interbreeding/example;				

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Question} \& Marking details \& Marks Available \\
\hline \multirow{8}{*}{5} \& (a) \& (i) \& \begin{tabular}{l}
Position in a food chain; Accept feeding level
\[
\begin{aligned}
\& C_{h}=R_{h}+E_{h}+P_{h} / \\
\& P_{h}=C_{h}-R_{h}-E_{h} / \\
\& P_{h}=C_{h}-\left(R_{h}+E_{h}\right) ;
\end{aligned}
\] \\
Accept \(P_{p}\) for \(C_{h}\) \\
Accept \(\mathrm{C}_{\mathrm{c}}\) for \(\mathrm{P}_{\mathrm{h}}\)
\end{tabular} \& 1
1 \\
\hline \& (b) \& (i) \& \begin{tabular}{l}
\(\mathrm{kJm}^{-2}\) week \(^{-1} /\) kJhectare \(^{-1}\) year \(^{-1}\) \\
[any energy unit / area unit/time unit] \\
(allow / or per or \({ }^{-1}\))
\end{tabular} \& 1 \\
\hline \& \& (ii) \& \begin{tabular}{l}
I \(\quad \frac{(950+2500+1050)}{450000} \times 100=1.0 \%\) \\
2 for correct answer \\
1 if correct workings wrong answer or no units \\
II \(\quad 2500-1250-450=800\) \\
2 for correct answer, \\
1 if correct workings wrong answer
\end{tabular} \& 2

2

\hline \& (c) \& (i) \& (Biomass of producers includes) \{wood/ cellulose/lignocellulose\}/biomass includes \{bones/teeth/fur\}; Which is inedible/ not \{eaten/digested\} by herbivores; \& 2

\hline \& \& (ii) \& All (of the dead organic material) is \{broken down/ digested/ used in respiration/ owtte\}. \& 1

\hline \& \& (iii) \& | Rate of decomposition will be less/owte; |
| :--- |
| (Acidic conditions) \{prevent/slow\} growth of bacteria and fungi/ \{inactivate/ denature/away from optimum pH$\}$ enzymes; |
| Accept: rate of decomposition will increase because the enzymes have low optimum $\mathrm{pH}=2$ marks | \& 2

\hline \& \& (iv) \& No, because not all of the dead organic matter is \{decomposed/ broken down\} / owtte; \& 1

\hline \& \& \& Question 5 Total \& [13]

\hline
\end{tabular}

Question			Marking details	Marks Available
6	(b)		Spermatogenesis Occurs in seminiferous tubules; NOT seminal tubules/ seminiferous vesicles \{Germinal epithelium/germ cells\} divides by mitosis; Forms (diploid/2n) spermatogonia / ium; Spermatogonia form primary spermatocytes; Meiosis I occurs producing \{haploid/n\} / or description of; secondary spermatocytes; Meiosis II forms spermatids; \{differentiate/ mature\} into spermatozoa; Nourished by \{Sertoli/ nurse\} cells/ protects them from the immune system; Comparison needed for any mark point J-O to be awarded Polar bodies form in oogenesis but not spermatogenesis/ four functional spermatozoa are formed from each spermatogonia only one functional ovum/ OWTTE; process begins at puberty for sperm but prior to birth for ova meiosis is completed as one process for sperm but is suspended in oogenesis at fertilisation meiosis has been completed for sperm but the second meiotic division is completed after fertilisation for ova \{Differentiation/ maturation\} occurs at primary oocyte stage oogenesis - maturation occurs at formation of spermatozoa Spermatozoa are nourished by \{Sertoli / nurse\} cells while developing oocytes are nourished by \{follicle/ granulosa cells/ cumulus/ corona radiate/ theca\} Any 10 from 15	
			Question total	[10]

